Split Datasets
The Objective of this article is to transform data set from row to column using explode() method. The scope of this article is to understand how to unnest or explode a data set using parallel processing framework Pyspark and Python native library- Pandas . Dataset looks like as below: dept,name 10,vivek#ruby#aniket 20,rahul#john#amy 30,shankar#jagdish 40, 50,yug#alex#alexa Pandas explode() import pandas as pd pan_df=pd.read_csv(r'explode.csv') df_exp=pan_df.assign(name=pan_df['name'].str.split('#')).explode('name') df_exp Output: Dataset is transformed successfully and we are able to create new rows from nested dataset. Pandas way of explode is simple, crisp and straight forward unless the dataset is complex. In next section of this article we will cover PySpark way of exploding or unnesting dataset. PySpark explode() Import libraries and Connect to Spark from pyspark import SparkContext,SparkConf import pyspark from pyspark.sql import SparkSes...